\(\int \frac {(a+a \cos (c+d x))^2}{\sqrt {\sec (c+d x)}} \, dx\) [302]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [A] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 23, antiderivative size = 135 \[ \int \frac {(a+a \cos (c+d x))^2}{\sqrt {\sec (c+d x)}} \, dx=\frac {16 a^2 \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{5 d}+\frac {4 a^2 \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{3 d}+\frac {2 a^2 \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {4 a^2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}} \]

[Out]

2/5*a^2*sin(d*x+c)/d/sec(d*x+c)^(3/2)+4/3*a^2*sin(d*x+c)/d/sec(d*x+c)^(1/2)+16/5*a^2*(cos(1/2*d*x+1/2*c)^2)^(1
/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d+4/3*a^2*(cos(
1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(
1/2)/d

Rubi [A] (verified)

Time = 0.17 (sec) , antiderivative size = 135, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.304, Rules used = {3317, 3873, 3854, 3856, 2720, 4130, 2719} \[ \int \frac {(a+a \cos (c+d x))^2}{\sqrt {\sec (c+d x)}} \, dx=\frac {2 a^2 \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {4 a^2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}+\frac {4 a^2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {16 a^2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d} \]

[In]

Int[(a + a*Cos[c + d*x])^2/Sqrt[Sec[c + d*x]],x]

[Out]

(16*a^2*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(5*d) + (4*a^2*Sqrt[Cos[c + d*x]]*Ell
ipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*d) + (2*a^2*Sin[c + d*x])/(5*d*Sec[c + d*x]^(3/2)) + (4*a^2*Sin[
c + d*x])/(3*d*Sqrt[Sec[c + d*x]])

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 3317

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^(n_.))^(p_.), x_Symbol] :> Dist
[d^(n*p), Int[(d*Csc[e + f*x])^(m - n*p)*(b + a*Csc[e + f*x]^n)^p, x], x] /; FreeQ[{a, b, d, e, f, m, n, p}, x
] &&  !IntegerQ[m] && IntegersQ[n, p]

Rule 3854

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[Cos[c + d*x]*((b*Csc[c + d*x])^(n + 1)/(b*d*n)), x
] + Dist[(n + 1)/(b^2*n), Int[(b*Csc[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && Integer
Q[2*n]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 3873

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^2, x_Symbol] :> Dist[2*a*(b/d
), Int[(d*Csc[e + f*x])^(n + 1), x], x] + Int[(d*Csc[e + f*x])^n*(a^2 + b^2*Csc[e + f*x]^2), x] /; FreeQ[{a, b
, d, e, f, n}, x]

Rule 4130

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) + (A_)), x_Symbol] :> Simp[A*Cot[e
+ f*x]*((b*Csc[e + f*x])^m/(f*m)), x] + Dist[(C*m + A*(m + 1))/(b^2*m), Int[(b*Csc[e + f*x])^(m + 2), x], x] /
; FreeQ[{b, e, f, A, C}, x] && NeQ[C*m + A*(m + 1), 0] && LeQ[m, -1]

Rubi steps \begin{align*} \text {integral}& = \int \frac {(a+a \sec (c+d x))^2}{\sec ^{\frac {5}{2}}(c+d x)} \, dx \\ & = \left (2 a^2\right ) \int \frac {1}{\sec ^{\frac {3}{2}}(c+d x)} \, dx+\int \frac {a^2+a^2 \sec ^2(c+d x)}{\sec ^{\frac {5}{2}}(c+d x)} \, dx \\ & = \frac {2 a^2 \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {4 a^2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}+\frac {1}{3} \left (2 a^2\right ) \int \sqrt {\sec (c+d x)} \, dx+\frac {1}{5} \left (8 a^2\right ) \int \frac {1}{\sqrt {\sec (c+d x)}} \, dx \\ & = \frac {2 a^2 \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {4 a^2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}+\frac {1}{3} \left (2 a^2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx+\frac {1}{5} \left (8 a^2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx \\ & = \frac {16 a^2 \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{5 d}+\frac {4 a^2 \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{3 d}+\frac {2 a^2 \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {4 a^2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 1.46 (sec) , antiderivative size = 136, normalized size of antiderivative = 1.01 \[ \int \frac {(a+a \cos (c+d x))^2}{\sqrt {\sec (c+d x)}} \, dx=\frac {a^2 \left (-96 i+\frac {192 i \operatorname {Hypergeometric2F1}\left (-\frac {1}{4},\frac {1}{2},\frac {3}{4},-e^{2 i (c+d x)}\right )}{\sqrt {1+e^{2 i (c+d x)}}}-40 i \sqrt {1+e^{2 i (c+d x)}} \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {1}{2},\frac {5}{4},-e^{2 i (c+d x)}\right ) \sec (c+d x)+40 \sin (c+d x)+6 \sin (2 (c+d x))\right )}{30 d \sqrt {\sec (c+d x)}} \]

[In]

Integrate[(a + a*Cos[c + d*x])^2/Sqrt[Sec[c + d*x]],x]

[Out]

(a^2*(-96*I + ((192*I)*Hypergeometric2F1[-1/4, 1/2, 3/4, -E^((2*I)*(c + d*x))])/Sqrt[1 + E^((2*I)*(c + d*x))]
- (40*I)*Sqrt[1 + E^((2*I)*(c + d*x))]*Hypergeometric2F1[1/4, 1/2, 5/4, -E^((2*I)*(c + d*x))]*Sec[c + d*x] + 4
0*Sin[c + d*x] + 6*Sin[2*(c + d*x)]))/(30*d*Sqrt[Sec[c + d*x]])

Maple [A] (verified)

Time = 8.36 (sec) , antiderivative size = 250, normalized size of antiderivative = 1.85

method result size
default \(-\frac {4 \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, a^{2} \left (-12 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+32 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-13 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+5 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-12 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{15 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(250\)
parts \(\frac {2 a^{2} \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}-\frac {2 a^{2} \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (-8 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+8 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-3 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{5 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}-\frac {4 a^{2} \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (4 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{3 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(522\)

[In]

int((a+cos(d*x+c)*a)^2/sec(d*x+c)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-4/15*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^2*(-12*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^6
+32*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)-13*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)+5*(sin(1/2*d*x+1/2*c)^2
)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-12*(sin(1/2*d*x+1/2*c)^2)^(1/2)
*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+
1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.09 (sec) , antiderivative size = 157, normalized size of antiderivative = 1.16 \[ \int \frac {(a+a \cos (c+d x))^2}{\sqrt {\sec (c+d x)}} \, dx=-\frac {2 \, {\left (5 i \, \sqrt {2} a^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 5 i \, \sqrt {2} a^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 12 i \, \sqrt {2} a^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 12 i \, \sqrt {2} a^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - \frac {{\left (3 \, a^{2} \cos \left (d x + c\right )^{2} + 10 \, a^{2} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}\right )}}{15 \, d} \]

[In]

integrate((a+a*cos(d*x+c))^2/sec(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

-2/15*(5*I*sqrt(2)*a^2*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) - 5*I*sqrt(2)*a^2*weierstrass
PInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - 12*I*sqrt(2)*a^2*weierstrassZeta(-4, 0, weierstrassPInverse(-
4, 0, cos(d*x + c) + I*sin(d*x + c))) + 12*I*sqrt(2)*a^2*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos
(d*x + c) - I*sin(d*x + c))) - (3*a^2*cos(d*x + c)^2 + 10*a^2*cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/d

Sympy [F]

\[ \int \frac {(a+a \cos (c+d x))^2}{\sqrt {\sec (c+d x)}} \, dx=a^{2} \left (\int \frac {2 \cos {\left (c + d x \right )}}{\sqrt {\sec {\left (c + d x \right )}}}\, dx + \int \frac {\cos ^{2}{\left (c + d x \right )}}{\sqrt {\sec {\left (c + d x \right )}}}\, dx + \int \frac {1}{\sqrt {\sec {\left (c + d x \right )}}}\, dx\right ) \]

[In]

integrate((a+a*cos(d*x+c))**2/sec(d*x+c)**(1/2),x)

[Out]

a**2*(Integral(2*cos(c + d*x)/sqrt(sec(c + d*x)), x) + Integral(cos(c + d*x)**2/sqrt(sec(c + d*x)), x) + Integ
ral(1/sqrt(sec(c + d*x)), x))

Maxima [F]

\[ \int \frac {(a+a \cos (c+d x))^2}{\sqrt {\sec (c+d x)}} \, dx=\int { \frac {{\left (a \cos \left (d x + c\right ) + a\right )}^{2}}{\sqrt {\sec \left (d x + c\right )}} \,d x } \]

[In]

integrate((a+a*cos(d*x+c))^2/sec(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

integrate((a*cos(d*x + c) + a)^2/sqrt(sec(d*x + c)), x)

Giac [F]

\[ \int \frac {(a+a \cos (c+d x))^2}{\sqrt {\sec (c+d x)}} \, dx=\int { \frac {{\left (a \cos \left (d x + c\right ) + a\right )}^{2}}{\sqrt {\sec \left (d x + c\right )}} \,d x } \]

[In]

integrate((a+a*cos(d*x+c))^2/sec(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate((a*cos(d*x + c) + a)^2/sqrt(sec(d*x + c)), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {(a+a \cos (c+d x))^2}{\sqrt {\sec (c+d x)}} \, dx=\int \frac {{\left (a+a\,\cos \left (c+d\,x\right )\right )}^2}{\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}} \,d x \]

[In]

int((a + a*cos(c + d*x))^2/(1/cos(c + d*x))^(1/2),x)

[Out]

int((a + a*cos(c + d*x))^2/(1/cos(c + d*x))^(1/2), x)